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Abstract

We present results on the production of high transverse momentum charm

mesons in collisions of 515 GeV/c negative pions with beryllium and copper

targets. The experiment recorded a large sample of events containing high

transverse momentum (pT ) showers detected in an electromagnetic calorime-

ter. From these data, a sample of charm mesons has been reconstructed via

their decay into the fully charged K�� mode. A measurement of the single

inclusive transverse momentum distribution of charged D mesons from 1 to

8 GeV/c is presented. An extrapolation of the measured di�erential cross

section yields an integrated D� cross section of 11:4�2:7(stat)�3:3(syst) �b

per nucleon for D� mesons with xF > 0. The data are compared with expec-

tations based upon next-to-leading order perturbative QCD, as well as with

results from pythia. We also compare our integrated D� cross section with
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measurements from other experiments.

PACS number(s): 13.85.Ni, 14.40.Lb, 13.60.Hb, 13.85.-t
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I. INTRODUCTION

Over the past decade, measurements of charm production in hadronic interactions have

provided valuable tests of the applicability of perturbative QCD (pQCD) to the production

of heavy quarks [1{4]. Quark-antiquark annihilation and gluon fusion are the leading order

(LO) contributors to charm quark hadroproduction. The next-to-leading order (NLO) con-

tributions to the cross sections have been evaluated [5{8], and are comparable to the leading-

order contributions. While the results of the NLO calculations can accommodate the charm

cross sections observed in ��-nucleon interactions [9{15], the large size of the NLO contribu-

tions is an indication that still higher order contributions may be signi�cant. Furthermore,

NLO calculations of the total charm quark cross section exhibit signi�cant sensitivity to the

choice of input parameters, including the charm quark mass (mc), the renormalization and

factorization scales, as well as the parton distribution functions (PDF's). For example, the

calculated charm cross section changes by a factor of �3 when the renormalization scale is
varied from 2mc to 1

2
mc. Varying the charm quark mass from 1.2 GeV/c2 to 1.8 GeV/c2

changes the calculated charm cross section by as much as an order of magnitude [16,17].
While there is signi�cant theoretical uncertainty in the total charm quark production cross

section, there is less uncertainty in the shapes of the di�erential distributions. The shapes
of the LO and NLO single inclusive charm quark distributions versus pT are rather similar,
and their shapes exhibit smaller sensitivity to variations in mc or the renormalization scale
[16,18].

To compare measurements of charm hadron production to the results of pQCD calcu-

lations, the consequences of hadronization of the produced charm quarks must be taken
into account. The fragmentation of charm quarks into charm hadrons is inherently a low
momentum transfer process, and is therefore currently beyond the domain of pQCD. Nev-
ertheless, the e�ects of fragmentation may be described phenomenologically by convoluting
the partonic cross sections with a suitable fragmentation function. One hopes to describe the

hadronization of charm quarks via a universal, process-independent fragmentation function,
such as the Peterson et al. [19] form, as measured in e+e� collisions. Convoluting the NLO
prediction for charm quark production with a fragmentation function results in a softening of

the predicted pT spectrum of the charm hadrons relative to the charm quarks. The Peterson
et al. fragmented NLO result is softer than the measured pT spectrum for charm hadrons,
and it has been observed that the unfragmented NLO result for charm quarks reproduces the

shape of observed charm hadron pT spectra reasonably well in the kinematic range xF > 0

and pT < 4 GeV/c [1]. One might expect additional nonperturbative e�ects, such as the
intrinsic transverse momentum of the incoming partons, to have an impact on the measured

di�erential distributions. Frixione et al. [1] noted that the Peterson et al. fragmented NLO
calculations of the charm pT spectra can be brought into agreement with data from exper-

iments E769 and WA82, provided the partons (in each hadron) are supplemented with an

average squared intrinsic transverse momentum, hk2Ti=2.0 (GeV/c)2.
It is also of interest to compare the data with a Monte Carlo (MC) simulation that

incorporates a model of the fragmentation process (such as the LUND string model [20]
as implemented in pythia). Again, nonperturbative e�ects may need to be taken into ac-

count to match the experimental results. pythia simulates the so-called \leading particle

e�ect", which results in an enhanced forward production for D mesons whose light quark is
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a spectator valence quark from the incoming beam particle. In addition to initial state radi-

ation e�ects, pythia also includes additional intrinsic transverse momentum characterized

by the parameter k? [21]. Reasonable agreement has been achieved between a pythia MC

simulation and the E769 data using a k? value of �1 GeV/c [22].

Fermilab experiment E706 [23] was designed to study high pT phenomena, principally

associated with direct photons [24,25] and high pT jets [26]. Jets arising from large mo-

mentum transfer collisions are expected to be rich in high pT charm particles. The high pT
requirement of the E706 trigger enhances the fraction of selected events containing charm by

nearly an order of magnitude compared to a minimum bias trigger. Since the selected events

result from high transverse momentum interactions, the data constitute a unique sample in

which to study charm particles (other recent �xed target charm experiments frequently em-

ployed lower threshold or minimum bias triggers, and yielded a rich sample of mostly lower

pT events). From a theoretical standpoint, one might expect the pQCD calculations to be-

come more reliable in the kinematic range accessible to E706. This paper presents results
of a study of high pT charm particles produced in 515 GeV/c ��-nucleon collisions. The
measured di�erential cross sections are compared to NLO pQCD calculations and results

from a pythia MC simulation. We also compare the integrated D� cross section with NLO
pQCD calculations and other recent measurements.

II. APPARATUS

Experiment E706 was performed in the Fermilab Meson West beam line. The unsepa-
rated negative secondary 515 GeV/c beam was primarily composed of pions with a small
admixture of kaons (<5%). Figure 1 displays a diagram of the key elements of the Meson
West spectrometer for this measurement [27]. The detector included a precision charged par-
ticle tracking system and a large acceptance liquid argon calorimeter (LAC). The charged

tracking system employed silicon microstrip detectors (SSD), a large aperture dipole analysis
magnet, proportional wire chambers (PWC), and straw tube drift chambers (STDC). The
LAC contained a �nely segmented electromagnetic section (EMLAC) as well as a hadronic
section. The high pT trigger was based upon signals originating from showers detected in
the EMLAC. Only data from the charged particle tracking system and the electromagnetic

section of the calorimeter contributed directly to this analysis.

A. Charged particle tracking system

The target region of the Meson West spectrometer (shown in Fig. 2) consisted of nuclear

targets and a SSD system [28]. The targets included two 780 �m thick copper pieces followed
by two beryllium cylinders of length 3.71 cm and 1.12 cm, respectively. A 1 cm air gap

between the two beryllium cylinders was designed for use in searches for heavy quark decays
[29]. The targets were supported in a Rohacell stand which had a cylindrical hole bored

along the beam axis where the targets were positioned. Three beam SSD modules were

located upstream of the target and 5 vertex SSD modules were located downstream of the
target. Each module was composed of a pair of single-sided SSD planes with strips aligned

vertically and horizontally along the X and Y axes, respectively. All of the SSD planes
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were 50 �m pitch detectors, with the exception of the pair of vertex SSD's nearest the

target, which consisted of a high resolution 25 �m pitch central region and 50 �m pitch

outer regions. A total of 8912 strips were instrumented, providing an angular acceptance of

� �125 mrad in each view.

A large dipole analysis magnet was located downstream of the SSD system. Charged

particles passing through the magnet received a pT impulse of �450 MeV/c in the horizontal

plane. Four PWC stations [30,31] were located downstream of this dipole analysis magnet,

each separated by �1 m. Each station consisted of four proportional wire sense planes with

wires oriented at the angles �90� (X view), 0� (Y view), 37� (U view), and �53� (V view).

Thus, the X and Y views were orthogonal to one another, as were the U and V views.

Within each sense wire plane, the spacing between the sense wires was 0.254 cm. A total

of 13,440 sense wires were instrumented. The STDC system [32] consisted of two stations,

with each station consisting of 4 X view planes followed by 4 Y view planes. The X and Y

view planes in the upstream station consisted of 160 and 128 tubes, respectively. Each tube
had a diameter of 1.03 cm. Each plane of the downstream STDC consisted of 168 tubes, and
each tube had a diameter of 1.59 cm. The hit resolution of individual tubes in the STDC's

was typically in the range of 200 to 300 �m.

B. Electromagnetic calorimeter

The EMLAC [33,34], which was located 9 m downstream of the target, was assembled

from four independent quadrants, each of which instrumented 1
4

of the azimuthal acceptance
of the detector. The inner and outer radii of the EMLAC were 20 cm and 160 cm respectively,
corresponding to a center of mass rapidity coverage of �1 to 1 (for the incident 515 GeV/c
beam). Each quadrant was composed of 66 layers. Each layer consisted of an absorber
sheet (which was 2 mm of lead in all but the �rst layer), a 2.5 mm liquid argon gap, a

pair of octant-size copper-clad G-10 anode boards, and another 2.5 mm argon gap. In
alternating layers, the copper cladding of the G-10 anode boards was cut to form either
concentric (R) strips or azimuthal (�) strips. The locations and widths of the R strips on
the radial anode boards were such that the R strips were focussed on the target region so that
neutral particles produced in the target passed through the same R strip in each successive

radial anode board. The width of the R strips on the �rst anode board was 5.5 mm. The
interleaved azimuthal anode boards were subdivided at a radius of 40 cm into inner � and

outer � regions. Each of the inner � strips subtended an angle of �

192
radians in azimuth

while the outer � strips subtended an angle of �

384
radians. Longitudinally, the EMLAC was

read out in two sections. The front section consisted of the �rst 22 layers (8.5 radiation

lengths) while the back consisted of the remaining 44 layers (18 radiation lengths). For each

section in each octant, signals from corresponding R (�) strips were ganged together and
read out independently.

C. Trigger

The trigger selected events producing high transverse momentum showers in the EM-

LAC. This event selection process involved four stages; beam and interaction de�nitions, a
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pretrigger requirement, and the �nal trigger requirements [35]. The beam de�nition required

that a single beam particle was detected in the beam hodoscope located 2 m upstream of

the target. A scintillation counter with a 3
8

inch diameter hole was located downstream of

the beam hodoscope and was used to reject interactions initiated by particles in the beam

halo. Pairs of interaction counters were mounted near the upstream and downstream mirror

plates of the dipole analysis magnet. An interaction was de�ned as a coincidence between

signals from at least two of these four interaction counters. To minimize potential confu-

sion due to out-of-time interactions, a cleaning �lter rejected any interactions that occurred

within �60 ns of each other. For those interactions that satis�ed the beam and interaction

de�nition, the pT deposited in various regions of the EMLAC was evaluated by weighting

the energy signals from the EMLAC R channel ampli�er fast outputs by � sin �i, where �i
is the polar angle that the ith strip subtends with respect to the nominal beam axis. The

pretrigger pT requirement was satis�ed if the pT detected in the inner 128 R channels or

the outer 128 R channels of at least one octant was greater than a threshold of �1.7 GeV/c
(for the PRETRIGGER HI). A pretrigger signal was issued only if the signals from a given
octant satis�ed that pretrigger pT requirement and there was no evidence in that octant of

substantial noise or signi�cant pT attributable to an earlier interaction and there was no
incident beam halo muon detected [36]. The pretrigger signal latched the data from the
various subsystems while the �nal trigger decision was being evaluated.

The experiment employed several di�erent high pT trigger de�nitions that were based
upon the LOCAL and GLOBAL signals from octants that satis�ed the pretrigger. Local

trigger groups were formed by clustering the 256 R channels in each octant into 32 groups
of 8 channels. Each of the adjacent pairs of groups of 8 channels (groups 1&2, 2&3, : : : ,
31&32) formed a local group of 16 strips. If the pT detected in any of these groups of 16 was
above a speci�ed high (or low) threshold, then a LOCAL HI (or LO) signal was generated for
that octant. A GLOBAL HI (or LO) signal for a given octant was generated if the summed
pT from the groups of 8 in that octant was above a speci�ed high (or low) threshold. In

order to suppress coherent noise e�ects, only groups of 8 registering at least �250 MeV/c
contributed to this global pT sum. (This cuto� was applied independently to signals from
groups of 8 from the front and back sections of the EMLAC.) Three of the trigger types,
which accounted for �80% of the E706 data, were used in this charm analysis; they were

the SINGLE LOCAL HI, the LOCAL
GLOBAL HI, and the TWO-GAMMA triggers. The

SINGLE LOCAL HI trigger required a LOCAL HI signal from an octant that satis�ed the
PRETRIGGER HI. The LOCAL HI threshold was �3 GeV/c. The LOCAL
GLOBAL HI

trigger required the coincidence of a LOCAL LO signal (threshold �1.7 GeV/c), a GLOBAL
HI signal (threshold �3 GeV/c), and a PRETRIGGER HI all from the same octant [37].

The TWO-GAMMA trigger required LOCAL LO signals from any two octants that were

separated by at least 90� in azimuth, where both octants also satis�ed the lower threshold
PRETRIGGER LO requirement.

In addition to the high pT triggers, a prescaled sample of low bias triggers were recorded

concurrently. These low bias triggers included beam, interaction and pretrigger events, and

constituted �10% of the recorded events.
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III. CHARGED TRACK RECONSTRUCTION

The charged tracks in the selected events were reconstructed �rst in the PWC system.

Since the PWC system consisted of four views, three-dimensional (3D) information was

extracted. Space tracks were formed by combining all possible XY (UV ) candidate track

segments and searching for hits along the projections in the remaining two views. Space

tracks were required to have a minimum of 11 hits if they involved all four PWC stations (16

planes), 10 hits if they involved three PWC stations (12 planes), and 6 hits if they involved

only the two upstream PWC stations (8 planes).

The STDC pattern recognition was initially seeded by the 3D space tracks reconstructed

in the PWC system (in order to correlate the hits in the X and Y views of the straw tubes).

Once the correlation was performed, an iterative procedure was used to form straw tracks

using only the hits detected in the STDC's. Straw track segments required a minimum of 4

hits in either the X or Y view. The angular resolution of straw tracks was �0.06 mrad. After
reconstructing the straw track segments, each space track was re�t using the hit information
from both the PWC and STDC systems.

After identifying the downstream space tracks, track segments were reconstructed in

the X and Y views of the SSD system. Four and �ve hit tracks were reconstructed, and
then three hit tracks were formed from the previously unused hits. The SSD tracks had
an average angular resolution that was similar to the STDC's, and an impact parameter
resolution at the primary vertex of �15 �m (for p >� 15 GeV/c). Track segments were
also reconstructed from the hits in the beam SSD modules to measure the direction of the

incident beam particle.
Three dimensional tracks were formed in the SSD system by linking the projected 3D

downstream (PWC and STDC) tracks to corresponding projected SSD X and Y track seg-
ments at the center of the analysis magnet. In the bend plane of the analysis magnet, a
link between an SSD X track segment and a downstream space track was established if the

corrected di�erence between the X positions at the magnet center of the projected SSD X
track segment and the projected downstream track was within 3.3��X . A link between an
SSD Y track segment and a downstream space track occurred when the corrected di�erence
between the Y positions of the projected tracks at the magnet center was within 3.3��Y and

the corrected slope di�erence between the tracks was within 3.3���Y [38]. The matching

resolutions for the projections (��X and ��Y ) and the Y Z slopes (���Y ) were momentum

dependent functions which were extracted from the data. SSD X and Y view track seg-

ments were correlated with each other by virtue of being linked to the same downstream
space track. Once the linking was complete, the primary vertex for the event was recon-

structed [39]. Figure 3 shows a distribution of reconstructed primary vertex locations along
the nominal beam direction (Z axis) for events accumulated during the 1990 �xed target

run. Based upon the primary vertex location, one can identify whether the interaction oc-
curred in the beryllium, copper, or silicon (SSD) targets. The average resolution for the Z

location of the primary vertex was �300 �m. After the primary vertex was located, the di-

rection cosines, charge, and momentum of each reconstructed charged track were evaluated.
(The momentum scale was calibrated using J= and K0

S signals.) The average momentum

resolution for charged tracks produced in the target region was �p=p � 0:0076 + 0:00026p,

where p is the momentum measured in GeV/c.
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After the full sample of events was reconstructed and the results written in the form of

data summary tapes (DSTs), a secondary vertex analysis was performed to search for evi-

dence of heavy quark production. Only events that had a reconstructed primary vertex in

the copper or beryllium targets were used in this analysis (�17:1 cm < Z < �8:5 cm). For

each event, tracks having large transverse signi�cance to the primary vertex were identi�ed

as secondary tracks. Transverse signi�cance is de�ned as the measured impact parameter

between a vertex and a given track candidate divided by the corresponding expected uncer-

tainty. The algorithm evaluated all pairs of secondary tracks and selected only those pairs

that were consistent with emanating from the same space point. For all such combinations,

the algorithm determined whether any other secondary tracks had transverse signi�cance of

less than 3 units relative to the space point in question. All such tracks were added to the

track list associated with that secondary vertex, and the vertex location and its associated

uncertainties were reevaluated (via a �2 minimization technique). A list of vertices, each

determined by two or more space tracks was thus generated. Two track vertices were re-
ferred to as vees and all other vertices were referred to as secondary vertices. To minimize
the losses introduced by only utilizing secondary tracks, all space tracks in the event were

examined to determine whether they might belong to any given secondary vertex or vee.
This phase of the program generated a list of additional tracks that might possibly belong
to each of the secondary vertices or vees. Neither the secondary vertices nor the vees were
re�t with any of these additional tracks. Only those events with at least one reconstructed
secondary vertex or vee contributed to this analysis.

IV. CHARM SIGNALS IN THE E706 DATA

From the data sample acquired during the 1990 �xed target run, we have identi�ed
D0, D��, and D� signals in fully charged modes. The D0 and D�� signals (see Fig. 4)

do not directly contribute to the measurements presented in this report, which are based
upon the sample of D� mesons that were observed via their decay to the fully charged �nal
state K�����. The D� sample was extracted from the subset of events that contained
at least one secondary vertex with 3 tracks or a vee with additional tracks attached to
it. For all such vertices (vees), the three-body invariant mass was evaluated by assigning

the charged pion mass to each of the two like-charge tracks while the oppositely charged
track was assigned the kaon mass. To reduce the large combinatorial background, only

secondary vertices that satis�ed additional requirements contributed to the �nal analysis.
The signi�cant requirements were: (1) the impact parameter to the primary vertex of the

parent momentum vector formed from the candidate decay products must be less than 50 �m;

(2) the longitudinal separation between the primary and secondary vertex normalized by the

corresponding expected uncertainty in that separation must be at least six; (3) the impact

parameter of each candidate decay track to the secondary vertex (vee) must be less than
0.4 of the corresponding impact parameter to the primary vertex for every candidate decay

track that contributed to the determination of the secondary vertex (vee) location; (4) for

those tracks that contributed to the secondary vertex �nding, the product of the secondary

to primary vertex impact parameter ratios must be less than 0.005 for secondary vertices or

less than 0.002 for vees.
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Figure 5 shows the K�� invariant mass spectrum from the events satisfying the above

analysis requirements. The mass distribution contains 110 � 17 combinations above back-

ground in the D� mass region (1.8 to 1.94 GeV/c2) with xF � 2pZ=
p
s > �0:2 and

pT > 1 GeV/c. Figure 6, which shows mass spectra in several pT intervals, illustrates

the broad pT range populated by this D sample. This large range is a consequence of the

E706 trigger, which preferentially selected high pT interactions. The high trigger thresholds

coupled with the large combinatorial background compromise our ability to observe a signif-

icant signal for D mesons with pT < 1 GeV/c [as indicated in Fig. 6(a)]. (The main source of

background is secondary interactions in the target.) The D signal region was de�ned to be

between 1.80 and 1.94 GeV/c2, except for the interval 1 < pT < 2 GeV/c, where a narrower

mass range of 1.82 to 1.92 GeV/c2 was employed. This more restrictive mass requirement

reduces the statistical uncertainty with only a minimal loss of e�ciency. Since the resolution

of the reconstructed D signal (�19 MeV) observed in the data and our MC simulation were

consistent, the small loss of events resulting from the narrower mass range was absorbed
into the reconstruction e�ciency. The background in the signal region was estimated via a
linear interpolation between the lower and upper sideband regions. The uncertainty in the

number of background combinations was estimated by �tting the background to �rst and
second order polynomials over several mass regions (which included the signal region).

Figure 7 shows the tracks from an event containing a reconstructed charm particle can-
didate with a pT of 4.1 GeV/c. The �gure shows the various target elements, the �rst vertex
SSD plane, and the projected charged tracks from the event which reveal a primary vertex

and a displaced three-track secondary vertex. Due to the high transverse momentum of the
charm candidate, the secondary vertex is well isolated from the other charged tracks in the
event. Note that the vertical scale is magni�ed with respect to the horizontal scale; the
polar angle of the widest angle track is no more than about 6�.

V. EFFICIENCIES

An event simulation was used to estimate the e�ciency for selecting events containing
charged D mesons and for detecting those D� decays. The simulation includes an event
generator and a detector simulation. The event generator simulates particle production in

high energy collisions, and the detector simulation models the response of the detectors to
the generated particles. The details of this simulation and the evaluation of the e�ciencies

are discussed below.

A. Event generation

The event generator chosen to produce full events was the pythia 5.6/jetset 7.3 pack-

age [40]. The physics processes employed in the event generation are speci�ed by the user.
The physics processes investigated in this analysis included minimum bias events and a pure

charm event sample. The former was used to tune the MC parameters to match the global

characteristics of events observed in the data. Once the MC simulation was tuned, the

e�ciencies for triggering on and selecting events containing charm particles were evaluated

using the pure charm event sample. pythia describes the hard scattering between hadrons
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via leading order perturbative QCD matrix elements, and simulates the NLO contributions

through e�ective K factors [40,41]. Parton showers are produced via perturbative branch-

ings of one parton into two or more partons. The pythia simulation also includes initial

state radiation of the incoming partons, which by default, is activated. jetset handles the

nonperturbative fragmentation of the �nal state colored partons into colorless hadrons using

the LUND string model [20]. In addition, jetset handles the decays of unstable particles

via a list of decay modes and branching ratios that are extracted from Particle Data Group

tables. For each event, the event generator provides a list of the resulting stable particles

(and their associated kinematic variables) that can be used as input to the E706 detector

simulation. The detector simulation is based upon the geant software package [42].

The event generator was �rst tuned to match various distributions observed in our data

which were relevant to this analysis. Since the trigger discriminated using electromagnetic

depositions, it is important to reproduce the pT spectrum of particles that produce elec-

tromagnetic showers. Figure 8 shows the spectrum of �0's measured in the data and the
corresponding spectra generated by pythia for several choices of the k? parameter. The
data distribution was measured using the low bias triggers, and the MC spectrum was gen-

erated using minimum bias events. In each case, the MC spectrum is normalized to the same
integral as the data over the kinematic range shown in the �gure. The data are reasonably
described by the pythia result generated using a k? value of �1 GeV/c, which is larger
than the pythia default k? value of 0.44 GeV/c. The pT spectra of charged tracks were
also compared and exhibited a similar level of agreement. We chose a k? value of 1.0 GeV/c

for further study. To improve the match between the charged particle multiplicity observed
in our data and pythia, we adjusted the pythia parameter designated as the e�ective

minimum transverse momentum for multiple interactions [43], which increased the mean
track multiplicity by �30%. Figure 9 shows the multiplicity distributions of charged tracks
as reconstructed in the PWC system and in the X and Y views of the SSD system for
both the data sample and the Monte Carlo sample (after adjustment of the aforementioned

pythia parameter) for events that satis�ed at least one of the triggers used in this analysis.
The corresponding data and MC distributions are similar, indicating that the adjusted MC
simulates the particle multiplicity of high energy collisions reasonably well. Rapidity distri-

butions of charged tracks in the MC and data were also found to be in reasonable agreement.
With these modi�cations, the pythia simulation adequately describes the distributions of

�nal state particles observed in our data.

B. Trigger simulation

As previously described, the E706 trigger utilized signals from the electromagnetic section
of the LAC. Since the EMLAC consists of �27 radiation lengths, but only �1 interaction

length, photons deposit nearly all of their energy in the EMLAC, whereas hadrons usually do
not. Consequently, high pT photons and electrons were more likely to trigger the apparatus

than hadrons of the same pT . To investigate the impact of the requirements imposed by

the trigger on observed events, we developed a software simulation of the online trigger.
Corrections for the losses resulting from the high pT thresholds of the various triggers were

evaluated by subjecting pythia events to this software trigger simulation. The main features
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of the trigger simulation are discussed in this section.

The trigger simulation depends upon the modeling of the energy deposited in the active

volume of the EMLAC by incident particles. In order to generate a substantial number of

events in a timely manner, the showers generated in the EMLAC by incident particles were

parametrized. After accounting for the energy loss in the inactive material in front of the

calorimeter (such as the cryostat wall), the (calibrated) energy response of the EMLAC to

incident photons and electrons was parametrized by an energy resolution function, �E =q
0:222 + 0:162E + (0:01E)2, where E is the energy in GeV. The response of the EMLAC

to incident hadrons was investigated using the geant software package [42]. Individual

hadrons at a �xed energy of 20 GeV were generated in the target region and propagated

through the full detector simulation (resulting in full showers in the EMLAC). The simulated

calibrated energy response relative to the incident hadron energy was evaluated for various

incident hadron types and the resulting distributions are shown in Fig. 10(b) and (c). [For

comparison, the corresponding distribution for incident 20 GeV photons is shown in Fig.

10(a).] These distributions were used to parametrize the response of the EMLAC to incident
hadrons. Since these distributions were generated based upon the full shower response of the
EMLAC, they already include the e�ects of the intrinsic energy resolution of the EMLAC.
The shapes of these distributions were found to be relatively insensitive to variations in
the incident energy for E > �6 GeV, and hadrons below this energy were generally not
detected. The transverse and longitudinal development of showers were also parametrized

based upon full shower geant studies. In the transverse direction, a radial shower pro�le
was used to generate the simulated energy deposition on the R strips near the centroid of
the shower (see Fig. 11). The longitudinal shower development for incident photons and
hadrons was parametrized as the ratio of the energy in the front section of the EMLAC with
respect to the total energy deposited in the EMLAC [39]. These parameterizations of the

response of the EMLAC to incident photons and hadrons were used to provide an e�cient
simulation of the distribution of energy deposited in the EMLAC for each of the incident
particles generated by pythia which impinged on the active region of the EMLAC. In this
manner, the total energy deposited on each R strip was estimated as the scalar sum of the
energy depositions of the individual particles in that given event.

The trigger pT detected by each R strip was evaluated by weighting the energy detected

on that strip by the appropriate measured strip trigger weight, which increased as � sin �i.
(The strip trigger weights were measured and evaluated independently for each trigger type
used in this analysis.) From the pT in the strips, LOCAL and GLOBAL pT sums were

calculated analogously to the online trigger method. These pT sums and the measured

trigger e�ciency curves for each trigger were used to evaluate the event trigger probabilities
for each trigger type for each event. The simulated event was either accepted or rejected

based upon these trigger probabilities.
This trigger simulation was tested by comparing the fraction of interactions in which the

LOCAL LO and LOCAL HI requirements were satis�ed in the Monte Carlo simulation and
the low bias data. The interactions in the low bias data were required to have a reconstructed

vertex in the target region and events containing beam halo muons were excluded. Several

MC event samples were generated using the minimum bias event generator and varying the
k? parameter from 0.7 GeV/c to 1.3 GeV/c. For each of these samples, we measured the
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rate at which the LOCAL LO and LOCAL HI signals were generated. Figure 12(a) shows

the rate of LOCAL LO signal generation in the data sample compared to the corresponding

rate determined from the MC samples. Figure 12(b) shows a similar comparison for the

LOCAL HI signal. The open circles represent the MC results for the various k? choices, and

the shaded band represents the data and its associated uncertainty. Both the LOCAL LO

and LOCAL HI signal rates are reproduced by the pythia MC simulation using a k? value

of �1 GeV/c. The relative rates between the SINGLE LOCAL HI, LOCAL
GLOBAL HI,

and TWO-GAMMA triggers were also consistent between the MC and data samples. These

observations indicate that the tuned MC simulation provides reasonable estimates of the

rates at which high energy interactions satisfy the various triggers that contributed to this

analysis.

C. Trigger e�ciency for charm events

Since the tuned pythia MC simulation reproduced the kinematic distributions of �nal
state hadrons, as well as the observed trigger rates in the data, we used this simulation

to evaluate the trigger e�ciency for charm events. The trigger e�ciency is determined by
calculating the probability that an event containing a D� meson (which decays to K��) will
satisfy the SINGLE LOCAL HI, LOCAL
GLOBAL HI, or TWO-GAMMA trigger. (We
compared the integrated D� cross sections determined using each trigger type individually,
and found them to be consistent within uncertainties.) The average trigger e�ciency is

evaluated as a function of the pT of the charged D meson that decayed to the K�� �nal
state. Figure 13(a) shows the resulting trigger e�ciency for the central k? value of 1 GeV/c,
as well as for other reasonable choices of k? values based upon Fig. 12. In Fig. 13(b),
the ratios of the trigger e�ciencies for the larger (and smaller) k? values with respect to
the central value are presented. The �15% systematic uncertainty associated with this

choice was determined based on the fractional di�erence between the mean value of the
e�ciencies determined via the larger and smaller k? choices. It is also plausible that the
trigger e�ciency will be sensitive to the value of the charm quark mass that is used in the
MC simulation. Figure 14(a) shows the trigger e�ciency versus the transverse momentum
of the D� for three choices of mc (1.2, 1.35, and 1.5 GeV/c2). Figure 14(b) shows the ratio

of trigger e�ciencies for the larger and smaller charm quark mass values with respect to
the central value. The �10% uncertainty associated with the choice of mc=1.35 GeV/c2

was determined based upon the fractional change in the mean value of the trigger e�ciency
when mc was varied from 1.2 GeV/c2 to 1.5 GeV/c2.

D. Tracking simulation

In addition to correcting for losses due to the trigger, we must also evaluate the e�ciency

of reconstructing the decay vertex once the event has triggered the apparatus. All of the
tracking detectors were modeled within the framework of geant to estimate the losses due

to the geometrical acceptance of the tracking system and detector performance. Various
detector e�ects, such as e�ciency, resolution and noise, were evaluated in the data and

then incorporated into the MC simulation. Hit e�ciencies are modeled as a function of
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transverse position in the tracking detectors. Figure 15 shows the number of hits on the

reconstructed tracks in the PWC system, and the X and Y views of the SSD system for

both the MC and data samples. The consistency between these distributions indicates that

the tracking detector e�ciencies are well modelled. We also tuned the MC simulation to

reproduce the hit multiplicities in the charged tracking detectors. Figure 16 shows the MC

and data distributions for the average hit multiplicity in the PWC planes, and the 25 �m

and 50 �m pitch SSD planes, respectively. Both the e�ects of delta rays and noise hits

have been included in this simulation [44]. The mean hit multiplicity from the data and

the MC simulation are similar; however, the data distributions are slightly broader. The

impact of increasing the hit multiplicity assumed in the MC simulation on the charged D

meson reconstruction e�ciency is discussed in the next section. Finally, we investigate how

well the resolution of the detector is simulated. The impact parameter distribution provides

a measure of the angular precision of the SSD tracks, and this is pertinent to separating

heavy quark decay vertices from the primary vertex. Figure 17 shows the MC and data
impact parameter distributions of all charged tracks relative to the primary vertex for the
X and Y track segments of the SSD system. The MC distribution is �5% narrower than

the corresponding data distribution. The e�ect of this di�erence on the estimated D�

reconstruction e�ciency will be addressed in the next section.
The decay of K0

S into �+�� provides an opportunity to compare high statistics MC and
data distributions relevant to secondary vertex �nding. A large sample of K0

S mesons were
reconstructed in the data using displaced two track secondary vertices. A sample of full

events enriched with K0
S mesons was generated using the minimum bias event generator

from pythia, and reconstructed using the secondary vertex algorithm described in this
paper. The background subtracted K0

S signals are shown in Fig. 18. The MC and data
K0

S mass resolutions are in good agreement. Figure 19(a) shows the 3D impact parameter
distributions of the �+ and �� tracks (from the K0

S signal region) to the vee location. Figure
19(b) shows the di�erence in the reconstructed Z coordinate of the vee as determined in the

X and Y views independently. In both cases, the MC simulation reproduces the distributions
observed in the data. We have compared the distributions of other analysis variables as well
and found similar agreement [39].

E. Charged D meson reconstruction e�ciency

The D� reconstruction e�ciency, which includes acceptance losses, detector e�ects, and

analysis requirements, is evaluated using the sample of pythia charm events generated with
k?=1.0 GeV/c that satisfy at least one of the high pT triggers. Figure 20 shows the D�

reconstruction e�ciency as a function of the reconstructed D� transverse momentum. The

average reconstruction e�ciency for each pT bin is de�ned as the value of the parametrization

shown in Fig. 20 evaluated at the center of the bin. The reconstruction e�ciency increases
from �9% in the lowest pT bin (1 to 2 GeV/c) to �17% in our highest pT bin (6 to 8 GeV/c).

The inset in Fig. 20 illustrates the D� reconstruction e�ciency versus xF for D� mesons

with pT > 1 GeV/c.

To estimate the systematic uncertainty in the reconstruction e�ciency, two additional

versions of the MC simulation were evaluated. One version included more noise hits than
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the default version, and the other had reduced hit multiplicity. The extreme values were

determined based upon variations observed in the data at di�erent times during the data

taking period. The variations in hit multiplicity were typically less than 10% of the central

value. The primary causes of these variations in the average hit multiplicity are variations

in the beam intensity and detector performance. Increasing the number of noise hits results

in a degradation of the track and vertex resolution which reduces the D� reconstruction

e�ciency. Reducing the hit multiplicity has the opposite e�ect. We compared the impact

parameter distributions of charged tracks to the primary vertex for these two MC versions

and found that the higher hit multiplicity version more accurately reproduced the data

result. However, the hit and track multiplicity in this version of the MC was larger than

that observed in the data. The sensitivity of the D� reconstruction e�ciency to the choice

of either matching the track multiplicity distribution or the impact parameter distribution

from the MC simulation and the data reects an uncertainty in the reported reconstruction

e�ciency. The 10% systematic uncertainty in the D� reconstruction e�ciency is based on
the relative di�erence between the results from these two versions of the MC simulation.

VI. RESULTS

The observed D! K�� signals and the e�ciencies for triggering on and reconstructing
these events are tabulated in Tables I and II for charged D mesons in the kinematic ranges
xF > �0:2 and xF > 0:0, respectively. Using these numbers, the cross section in each pT bin

is given by N(pT )

�(pT )LB
, where N(pT ) is the number of mass combinations above background in

the given pT bin, �(pT ) is the e�ciency for reconstructing those events, L is the integrated
luminosity, and B is the branching ratio for D ! K��, which is 9.1�0.6% [45]. The
integrated luminosity per nucleon is 7.8�0.8 events/pb for this data sample, including target
transverse �ducial cuts and corrections for beam absorption. In combining the signals from
the beryllium and copper targets, nuclear e�ects were assumed to be negligible for the

hadroproduction of open charm. The dependences of cross sections per nucleus on atomic
mass are often parametrized as �0A

�, where A is the atomic mass of the target nucleus.
Recent measurements of D meson production yield values of � consistent with one [2,46,47].

No signi�cant pT (or xF ) dependence of � is observed [47]. The di�erential and integrated
D� cross sections are discussed in the following subsections.

A. Di�erential cross sections

The D� di�erential cross sections per nucleon integrated over the ranges xF > �0:2 and

xF > 0 are presented in Table III [48] and displayed in Fig. 21. Due to the steeply falling
spectra and the large widths of the pT bins, the data points are plotted at pT values, plwT , that

correspond to the average values of the cross section in the appropriate bins as determined
from the pythia MC pT spectra [49]. The uncertainty in the cross section is obtained from

the quadrature sum of the statistical and systematic uncertainties.
Figure 22 shows our measured D� cross sections and the results of the pythia MC

simulation. Common systematic uncertainties in the luminosity and branching ratio have
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been excluded from the uncertainties shown in this �gure. The shapes of the D� spectra

generated by the pythia MC simulation are consistent with our measured spectra. These

pythia results were normalized to our measured cross section integrated over xF > �0:2 and

1 < pT < 8 GeV/c. The consistency between the data and the corresponding pythia result

integrated over the range xF > 0 [shown in Fig. 22(b)] indicates that pythia adequately

models the fraction of the cross section in the range xF > 0 relative to the fraction in the

range xF > �0:2.

Figure 23 shows the di�erential charged D cross section compared to results of NLO

pQCD calculations [50]. The renormalization and factorization scales employed in the cal-

culation of these di�erential distributions are as follows: �R = �0 and �F = 2�0, where

�0 =
q
m2

c + 1
2
(p2T + p2T ) and pT and pT are the transverse momenta of the charm and anti-

charm quarks. The solid curve shows the NLO pQCD result for charm quark production.

The dotted curve illustrates the NLO pQCD result including the e�ects of Peterson et al.

fragmentation (with �c=0.06). The other broken curves show the Peterson et al. fragmented

NLO pQCD results for charm production supplemented with various values of hk2Ti. The
pQCD cross sections shown in Fig. 23 have been normalized to our extrapolated integrated
D� cross section (see next section). The results are integrated over the range xF > �0:2.
(The corresponding comparisons for results integrated over the range xF > 0 do not ap-
pear substantially di�erent.) The common systematic uncertainties in the luminosity and

branching ratio have been excluded from the uncertainties shown in this �gure. The shapes
of the theoretical pT spectra for unfragmented charm quark production are consistent with
data on the hadroproduction of D mesons from experiments E769 [51] and WA82 [1]. E653
reported that the shape of the unfragmented NLO pQCD transverse momentum distribu-
tion was \somewhat harder" than the observed distribution [15]. Our data probe a larger

pT range, and the unfragmented theoretical pT spectrum is clearly harder than the spec-
trum observed in our data. Introducing Peterson et al. fragmentation into the calculation
results in a softer pT spectrum whose shape better matches the shape observed. It is clear
that the NLO pQCD spectrum generated using mc=1.5 GeV/c2 and supplemented with
hk2Ti=3 (GeV/c)2 is harder than our data, while the corresponding pT spectra generated

with hk2Ti values between 1 and 2 (GeV/c)2 are similar to what we observe. As noted in the

Introduction, the D meson pT spectra reported by experiments E769 and WA82 can also be
described by the fragmented NLO pQCD results supplemented with a hk2Ti=2 (GeV/c)2 [1].

B. Integrated cross section

Since the shapes of the E769 and WA82 D meson pT spectra are consistent with
the NLO pQCD calculations using Peterson et al. fragmentation supplemented with

hk2Ti=2 (GeV/c)2, we used that pQCD calculation to estimate the extrapolation factor

necessary to account for the low pT portion (pT < 1 GeV/c) of the D� cross section. We

�nd an extrapolation factor of 2.7. The uncertainty in that factor is estimated to be 15%

(which corresponds to the range of values obtained from the fragmented NLO calculation
supplemented with hk2Ti=1.5 (GeV/c)2 and the unfragmented NLO pQCD calculation). An

additional factor of 1.07�0.03 accounts for the D� mesons produced with xF < �0:2. This

factor was evaluated using the xF spectrum of D� mesons from the pythia MC simulation.
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The uncertainty was based on half the di�erence between the factor predicted for D+ and

D� mesons separately.

Using these factors, the total D� cross section is 16:6� 4:5(stat)� 4:8(syst) �b per nu-

cleon. The systematic error estimate includes uncertainties in the trigger and reconstruction

e�ciencies, normalization, branching ratio, and the extrapolation. The D� cross section for

xF > 0 is 11:4 � 2:7(stat) � 3:3(syst) �b per nucleon. This result is compared in Fig.

24 with previous measurements [9{15] of the inclusive D� cross section in �� interactions

at other beam energies. Where appropriate, the results from other experiments have been

adjusted to reect current branching ratio values. The error bars represent the statistical

and systematic uncertainties added in quadrature. The �gure also shows the results of NLO

pQCD calculations of the charm cross section [5,6,50]. The results have been adjusted by a

factor of 2 to account for the associated production of charm and are reduced by a factor

of 1.6 to reect the partial xF coverage (xF > 0) [16,52]. Since it is expected that the D�

to charm fraction is nearly constant over this energy range [1], the results are also multi-
plied by a factor of 0.22 to account for the fragmentation process c ! D�. This factor
was extracted from published measurements of the forward production charm hadron cross

sections [11]. The pQCD calculations use the SMRS2 [53] and HMRSB [54] parton dis-
tribution functions for the pion and nucleons, respectively. The solid curves in the �gure
are the values of the calculated charm cross section generated using a charm quark mass of
mc = 1:5 GeV/c2 and renormalization scales of 2mc and 1

2
mc. To illustrate the sensitivity

of the calculation to variations in the input parameters, the corresponding results are also

displayed for a charm quark mass of 1.35 GeV/c2 (dashed curves). The calculations are
expected to exhibit similar sensitivities to other inputs, such as the factorization scale and
parton distribution functions. While these theoretical uncertainties in the normalization of
the charm cross section are large at NLO, the energy dependence of the calculated charged
D meson cross section is less sensitive to these uncertainties and adequately describes the
energy dependence suggested by the data points from the various experiments.

VII. CONCLUSIONS

We have analyzed a large sample of 515 GeV/c �� interactions in copper and beryllium

targets selected via a high transverse momentum electromagnetic shower trigger to study the

hadronic production of high transverse momentum charged D mesons. Secondary vertices
from D� ! K����� decays were reconstructed in a charged particle tracking system which
included silicon strip detectors, a dipole magnet, proportional wire chambers, and straw
tube drift chambers. The data span the kinematic range xF > �0:2 and 1 < pT < 8 GeV/c,

a range which exceeds previously reported measurements.

The measured di�erential cross section is consistent with results from pythia, provided
pythia is supplemented with a k?�1 GeV/c. Our measured charged D meson pT spectrum

is not well described by the NLO pQCD calculations for charm quark production that
describe the lower pT results reported by E769 [51]. Our data are consistent with the charm

pT spectra resulting from Peterson et al. fragmented NLO pQCD calculations supplemented

with a hk2Ti of 1 to 2 (GeV/c)2. This observation is consistent with previous reports on
the comparison of the measured inclusive pT spectra of hadroproduced charm particles to
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fragmented NLO pQCD calculations supplemented with additional hk2Ti [1].

An extrapolation based upon our measured spectrum yields an integrated D� cross

section of 11:4 � 2:7(stat)� 3:3(syst) �b per nucleon for xF > 0:0. This value is consistent

with the trend observed in measurements at other incident beam energies. The total D�

cross section for 515 GeV/c ��-nucleon interactions is 16:6 � 4:5(stat) � 4:8(syst) �b per

nucleon.

ACKNOWLEDGMENTS

We thank M. Mangano and T. Sj�ostrand for sharing their valuable insights on the phe-

nomenology of charm hadroproduction and for helping us to understand and utilize their

programs. We also thank S. Kwan for several valuable discussions related to charm hadropro-

duction. We are grateful for the valuable contributions of our colleagues on Fermilab exper-

iment E672. We thank the U. S. Department of Energy, the National Science Foundation,
including its O�ce of International Programs, the Universities Grants Commission of India,

and Fermilab for their support of this research.

17



REFERENCES

[1] S. Frixione, M. L. Mangano, P. Nason, and G. Ridol�, Nucl. Phys. B431, 453 (1994).

[2] M. Dameri, in Heavy Quarks at Fixed Target-Proceedings of the 2 day Frascati Work-

shop, 1993, Vol. 1 of Frascati Physics Series, edited by S. Bianco and F. L. Fabbri

(INFN, Roma, Italy, 1993), pp. 167{180, (and references therein).

[3] J. A. Appel, Annu. Rev. Nucl. Part. Sci. 42, 367 (1992).

[4] S. P. K. Tavernier, Rep. Prog. Phys. 50, 1439 (1987).

[5] P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B303, 607 (1988).

[6] P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B327, 49 (1989).

[7] W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith, Phys. Rev. D 40, 54 (1989).

[8] W. Beenakker et al., Nucl. Phys. B351, 507 (1991).

[9] (NA11) ACCMOR Collaboration, R. Bailey et al., Z. Phys. C 30, 51 (1986).

[10] (NA32) ACCMOR Collaboration, S. Barlag et al., Z. Phys. C 39, 451 (1988), (includes
+15% shift cited in Ref. [12]).

[11] Fermilab E769 Collaboration, G. A. Alves et al., Phys. Rev. Lett. 77, 2388 (1996).
[12] (NA32) ACCMOR Collaboration, S. Barlag et al., Z. Phys. C 49, 555 (1991).

[13] (NA16) LEBC-EHS Collaboration, M. Aguilar-Benitez et al., Phys. Lett. B 135, 237
(1984).

[14] NA27 LEBC-EHS Collaboration, M. Aguilar-Benitez et al., Phys. Lett. 161B, 400
(1985); Z. Phys. C 31, 491 (1986).

[15] Fermilab E653 Collaboration, K. Kodama et al., Phys. Lett. B 284, 461 (1992).
[16] M. L. Mangano, P. Nason, and G. Ridol�, Nucl. Phys. B405, 507 (1993).

[17] R. Vogt, Z. Phys. C 71, 475 (1996).
[18] The shapes of the calculated pT spectra are not entirely independent of the choices of

the input parameters of the calculation. For illustrations of the sensitivity to the choice
of PDF and/or the renormalization scale formulation, see Ref. [17].

[19] C. Peterson, D. Schlatter, I. Schmitt, and P. M. Zerwas, Phys. Rev. D 27, 105 (1983).

[20] B. Andersson, G. Gustafson, G. Ingelman, and T. Sj�ostrand, Phys. Rep. 97, 33 (1983).
[21] Similar but distinct symbols have been adopted for the supplemental intrinsic transverse

momentum associated with the NLO pQCD calculation and for the pythia intrinsic
transverse momentum parameter to emphasize that while the concept is similar in the

two situations, the particular values of the parameter might be expected to di�er due

to the di�ering levels of contributions already incorporated in the calculations.
[22] S. Kwan for the E791 Collaboration, Testing QCD in Charm Hadroproduction, Joint

Experimental Theoretical Physics Seminar at Fermilab, June 1995.
[23] Fermilab E706 Collaboration, G. Alverson et al., Phys. Rev. D 48, 5 (1993).

[24] J. F. Owens, Rev. Mod. Phys. 59, 465 (1987).

[25] T. Ferbel and W. R. Molzon, Rev. Mod. Phys. 56, 181 (1984).
[26] Fermilab E706 Collaboration, G. Alverson et al., Phys. Rev. D 49, 3106 (1994).
[27] The diagram does not include the veto walls and steel absorber located upstream of the

detector elements shown. The diagram also excludes the downstream muon identi�cation

system, which was located downstream of the detector elements shown in the diagram,
and which was used primarily by Fermilab E672 to select events containing high mass

dimuons.

18



[28] E. Engels Jr. et al., Nucl. Instrum. Methods Phys. Res. A 253, 523 (1987).

[29] R. Jesik et al., Phys. Rev. Lett. 74, 495 (1995).

[30] K. Hartman, Ph.D. thesis, Pennsylvania State University, 1990.

[31] D. Brown, Ph.D. thesis, Michigan State University, 1992.

[32] C. Bromberg et al., Nucl. Instrum. Methods Phys. Res. A 307, 292 (1991).

[33] F. Lobkowicz et al., Nucl. Instrum. Methods Phys. Res. A 235, 332 (1985).

[34] W. DeSoi, Ph.D. thesis, University of Rochester, 1990.

[35] L. Sorrell, The E706 Trigger System, E706 Note 201, 1994 (unpublished); Ph.D. Thesis,

Michigan State University, 1995.

[36] Scintillation counter veto walls surrounding a large steel absorber located at the front

end of the Meson West spectrometer tagged muons that were produced upstream of the

experimental hall.

[37] Note that both the SINGLE LOCAL HI trigger and the LOCAL
GLOBAL HI trigger

are sensitive to high pT direct photons or photons from high pT �0 decays, but the
LOCAL
GLOBAL HI trigger exhibits greater sensitivity to high pT mesons that decay
into more widely separated photons, such as � !  or ! ! �0.

[38] Corrections were applied to the measured �X, �Y , and ��Y to account for the location
of the center of curvature of the path of the charged particles, the change in pZ, and for
the e�ects of the fringe �eld of the analysis magnet.

[39] S. Blusk, Ph.D. thesis, University of Pittsburgh, 1995.
[40] T. Sj�ostrand, Pythia 5.6 and Jetset 7.3 Physics and Manual CERN-TH.6488/92,

(1992).
[41] L. Cifarelli, E. E�skut, and Yu. M. Shabelski, Nuovo Cimento 106A, 389 (1993).
[42] F. Carminati, CERN Program Library Long Writeup W5013 (1993).
[43] This particular pythia parameter is stored in the array element PARP(81), and it was

reduced from 1.3 GeV to 0.7 GeV. See the pythia reference manual for additional
details [40].

[44] W. Chung, Ph.D. thesis, University of Pittsburgh, 1995.
[45] Particle Data Group, R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[46] The � determined from the D� mesons in this data sample was 1:28 � 0:33. See Ref.

[39] for details.
[47] Fermilab E769 Collaboration, G. A. Alves et al., Phys. Rev. Lett. 70, 722 (1993).

[48] The two contributions to the uncertainties in the numbers of D� mesons quoted in
Tables I and II are treated as uncorrelated statistical uncertainties in the di�erential

cross section analyses. The two contributions to the uncertainties associated with each

of the e�ciencies are treated as uncorrelated systematic uncertainties in the di�erential
cross section analyses.

[49] G. D. La�erty and T. R. Wyatt, Nucl. Instrum. Methods Phys. Res. A 355, 541 (1995).
[50] The NLO pQCD calculations were performed using a set of programs provided by M.

Mangano. (See Ref. [16] and references therein). Unless otherwise explicitly stated, the
theoretical parameters were set to the defaults speci�ed in Ref. [16].

[51] Fermilab E769 Collaboration, G. A. Alves et al., Phys. Rev. Lett. 77, 2392 (1996).

[52] The factor of 1.6 is from a NLO pQCD calculation, and therefore does not account
for the leading particle e�ect which results in enhanced forward production of charm

hadrons whose light quark is a spectator valence quark from the incoming beam particle.

19



[53] P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Rev. D 45, 2349

(1992).

[54] P. N. Harriman, A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Rev. D 42, 798

(1990).

20



TABLES

TABLE I. Numbers of D� candidates and associated e�ciencies per pT bin for D� mesons

with xF > �0:2. For the number of D� candidates, the �rst uncertainty represents the statistical

error in the total number of combinations in the D� signal region, while the second uncertainty

was determined by varying the �tted background shapes and the range over which the background

�ts were performed. The quoted uncertainties associated with the e�ciencies reect the statistical

and systematic errors, respectively.

pT bin (GeV/c) Number of D� Trigger E�. (%) Fitted Recon. E�. (%)

1{2 43� 12� 6 0:0138� 0:0005� 0:0023 8:9� 0:6� 0:9

2{3 43� 9� 4 0:0559� 0:0028� 0:0093 14:4� 0:9� 1:5

3{4 16� 5� 2 0:229� 0:018� 0:038 16:4� 1:2� 1:6

4{6 6� 3� 2 1:49� 0:13� 0:25 17:4� 1:5� 1:7

6{8 2� 1:4 8:81� 2:2� 1:5 17:6� 3:7� 1:8

TABLE II. Numbers of D� candidates and associated e�ciencies per pT bin for D� mesons

with xF > 0. For the number of D� candidates, the �rst uncertainty represents the statistical

error in the total number of combinations in the D� signal region, while the second uncertainty

was determined by varying the �tted background shapes and the range over which the background

�ts were performed. The quoted uncertainties for the e�ciencies represent the statistical and

systematic errors, respectively.

pT bin (GeV/c) Number of D� Trigger E�. (%) Fitted Recon. E�. (%)

1{2 41� 10� 5 0:0141� 0:0006� 0:0023 11:3� 0:8� 1:1

2{3 31� 7� 4 0:0581� 0:0033� 0:0096 14:6� 1:1� 1:5

3{4 13� 4� 2 0:222� 0:020� 0:037 16:5� 1:5� 1:7

4{6 5� 3� 2 1:36� 0:15� 0:23 17:8� 1:8� 1:8

6{8 0 9:72� 2:8� 1:6 18:5� 4:1� 1:9

TABLE III. Inclusive D� di�erential cross section per nucleon in 515 GeV/c ��-nucleon in-

teractions integrated over D meson xF > �0:2 and xF > 0. The quoted uncertainties in the

cross sections reect the statistical and systematic errors, respectively. See the text for additional

details.

pT bin plwT
d�
dpT

(�b=(GeV=c)) d�
dpT

(�b=(GeV=c))

(GeV/c) (GeV/c) xF > �0:2 xF > 0

1{2 1.44�0.02 4:9� 1:5� 1:2 3:6� 1:0� 0:9

2{3 2.41�0.02 0:75� 0:17� 0:19 0:52� 0:13� 0:13

3{4 3.41�0.02 0:060� 0:020� 0:016 0:050� 0:017� 0:014

4{6 4.70�0.05 0:0016� 0:0010� 0:0004 0:0015� 0:0010� 0:0004

6{8 6.75�0.05 0:000091� 0:000064� 0:000037 -
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FIG. 1. Plan view of the 1990 con�guration of the Meson West Spectrometer (omitting muon

identi�ers).
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FIG. 2. Elevation view showing the con�guration of the target and SSD region during the 1990

�xed target run. Shown from left to right is the third of 3 beam SSD modules (labelled as SSD

planes 5 and 6), the copper and beryllium targets, and the 5 vertex SSD modules (labelled as

SSD planes 7 through 16). The instrumented regions of the SSDs are designated by the shaded

regions. The dotted lines illustrate the size of the SSD planes. The odd numbered planes measure

X coordinates while the even numbered planes measure Y coordinates. The strips are 50 �m wide

on all SSD planes except for the center �4.8 mm of SSD planes 7 and 8, where the strips are 25 �m

wide. Reconstructed tracks from an interaction which includes a candidate charm particle are also

depicted in the �gure.
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FIG. 4. (a) The combined K��+ and K+�� invariant mass distribution for vees (two track

secondary vertices) with pT > 1 GeV/c, and (b) the mass di�erence between K��s and K�

combinations for the signal and sideband regions of the neutral D ! K� candidates. The �s is a

relatively low momentum (soft) pion that is attached to the primary interaction vertex.
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FIG. 5. The K����� invariant mass spectrum for those events satisfying all reconstruction

requirements from the 1990 �xed target run data sample. All contributingK�� combinations have

xF > �0:2 and pT > 1 GeV/c.
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FIG. 6. The K����� invariant mass spectrum in pT intervals. The pT intervals are (a) 0.5 to

1 GeV/c, (b) 1 to 2 GeV/c, (c) 2 to 3 GeV/c, (d) 3 to 4 GeV/c, (e) 4 to 6 GeV/c, and (f) 6 to

8 GeV/c as indicated. The distributions are integrated over the region xF > �0:2.
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FIG. 7. A illustration of the reconstructed tracks in the XZ view of an event containing a

candidate high pT charged D meson decaying into the fully charged K�� mode downstream of the

primary vertex.
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FIG. 9. Normalized distribution of the number of reconstructed tracks in (a) the downstream

tracking system, (b) the SSD X view, and (c) the SSD Y view for events satisfying at least one of

the triggers used in this analysis. The �lled circles represent the data and the open circles are the

corresponding results from the MC simulation.
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FIG. 10. Probability distributions of the calibrated energy response of the EMLAC for sim-

ulated incident 20 GeV (a) photons, (b) mesons, and (c) baryons relative to the energy of the

incident simulated particle.
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FIG. 12. The fraction of interactions in which (a) the LOCAL LO requirement was satis�ed,

and (b) the LOCAL HI requirement was satis�ed, as a function of the k? parameter of the pythia

MC simulation. The shaded band across the plot shows the corresponding rates as measured in

the low bias data. The width of the band is an estimate of the uncertainty in the rates measured

in the low bias data sample.
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FIG. 13. (a) The trigger e�ciency as a function of the D� pT for three values of k?;

k?=0.95 GeV/c, k?=1 GeV/c, and k?=1.05 GeV/c, and (b) the ratios of the trigger e�-

ciencies evaluated with k?=1.05 GeV/c compared to the central value of k?=1.0 GeV/c and

k?=0.95 GeV/c compared to the central k?=1.0 GeV/c value. The e�ciencies shown are averaged

over the region xF > �0:2.
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FIG. 14. (a) The trigger e�ciency as a function of theD� pT for three values of the charm quark

mass: mc = 1:5 GeV/c2, mc = 1:35 GeV/c2 and mc = 1:2 GeV/c2, and (b) the ratio of trigger

e�ciencies evaluated with the larger mc = 1:5 GeV/c2 compared to the central mc = 1:35 GeV/c2

mass value and the smaller mc = 1:2 GeV/c2 compared to the central mc = 1:35 GeV/c2 mass

value. The default value in the pythia MC simulation is 1.35 GeV/c2. The e�ciencies shown are

averaged over the region xF > �0:2.
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FIG. 15. The normalized distribution of the number of hits on reconstructed tracks in (a) the

PWC system, (b) the SSD X view, and (c) the SSD Y view. The �lled circles represent the

distribution measured in the data while the open circles are the corresponding results from the MC

simulation.
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FIG. 16. The normalized distribution of the total number of hits per plane in (a) the PWC's,

(b) the vertex SSD planes that have 25 �m regions, and (c) the other vertex SSD planes. The �lled

circles represent the distributions measured in the data and the open circles are the corresponding

results from the MC simulation.
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FIG. 17. Impact parameter distribution of SSD tracks to the primary vertex in the (a) X and

(b) Y views. The �lled circles represent the distributions measured in the data and the open circles

are the corresponding results from the MC simulation.
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FIG. 18. Background subtracted �+�� invariant mass distribution for vees reconstructed in the

MC and data samples. The �lled circles are the data and the open circles are the corresponding

results from the MC simulation. The inset shows the unsubtracted �+�� invariant mass spectrum

for the data events.
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FIG. 19. (a) Spatial impact parameter distributions of the pion tracks to the K0
S vee location,

and (b) the di�erence in the reconstructed Z location of the vee between the X and Y views. Both

distributions are background subtracted. The �lled circles are the distributions from the data and

the open circles are the corresponding results from the MC simulation.
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FIG. 20. D�
! K����� reconstruction e�ciency as a function of the reconstructed D�

transverse momentum for events that satis�ed at least one of the high pT triggers used in this

analysis. The curve is a parametrization of the e�ciency as a function of pT . The inset shows the

D�
! K����� reconstruction e�ciency as a function of xF for D� mesons with pT > 1 GeV/c

for triggered events. Error bars reect statistical uncertainties only.
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FIG. 21. Di�erential cross section per nucleon for D� production in 515 GeV/c ��-nucleon

collisions as a function of the pT of the D meson. The �lled circles represent data integrated over

the region xF > �0:2 and the triangles are for data integrated over xF > 0. The vertical error

bars represent the statistical and systematic uncertainties added in quadrature.
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FIG. 22. Comparison of the D� di�erential cross section per nucleon measured by experiment

E706 with the corresponding result from the pythia simulation MC for the kinematic ranges (a)

xF > �0:2, and (b) xF > 0. These pythia results are normalized to match our measured cross

section integrated over xF > �0:2 and 1 < pT < 8 GeV/c. The error bars for the data represent

statistical and systematic uncertainties added in quadrature excluding luminosity and branching

ratio contributions.
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FIG. 23. Comparison of the D� di�erential cross section per nucleon measured by experiment

E706 to the results of NLO pQCD calculations. The pure NLO pQCD unfragmented result, and the

NLO Peterson et al. fragmented spectra supplemented with average intrinsic transverse momenta

squared (hk2Ti) of 0.0 (GeV/c)2, 1.0 (GeV/c)2, 2.0 (GeV/c)2, and 3.0 (GeV/c)2 are shown in this

�gure. The charm quark mass employed in this calculation is 1.5 GeV/c2. Error bars represent

statistical and systematic uncertainties added in quadrature excluding luminosity and branching

ratio contributions.
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FIG. 24. The integrated cross section for inclusive D� production with xF > 0 for incident ��

as a function of beam energy. Also shown are NLO pQCD calculations of the charm cross section

in the region xF > 0 for two choices of the charm quark mass (1.5 GeV/c2 and 1.35 GeV/c2)

and two choices of the renormalization scale (12mc and 2mc). In each case, the theoretical cross

section is calculated with the factorization scale �xed at �F = 2mc. (Both the NA16 and NA27

measurements were at 360 GeV, but are plotted at 356 and 364 GeV respectively, in order to

clearly show the individual data points and their uncertainties.)
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